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and metabolites associated with left ventricular 
cardiac dysfunction in pan-cancer patients
Jessica C. Lal1,2,3,4*, Michelle Z. Fang1,2, Muzna Hussain5, Abel Abraham5, Reina Tonegawa‑Kuji1, Yuan Hou1, 
Mina K. Chung5,6, Patrick Collier2,5,9* and Feixiong Cheng1,2,7,8* 

Abstract 

Background Cancer‑therapy related cardiac dysfunction (CTRCD) remains a significant cause of morbidity and mor‑
tality in cancer survivors. In this study, we aimed to identify differential plasma proteins and metabolites associated 
with left ventricular dysfunction (LVD) in cancer patients.

Methods We analyzed data from 50 patients referred to the Cleveland Clinic Cardio‑Oncology Center for echocar‑
diograph assessment, integrating electronic health records, proteomic, and metabolomic profiles. LVD was defined 
as an ejection fraction ≤ 55% based on echocardiographic evaluation. Classification‑based machine learning models 
were used to predict LVD using plasma metabolites and proteins as input features.

Results We identified 13 plasma proteins (P < 0.05) and 14 plasma metabolites (P < 0.05) associated with LVD. Key 
proteins included markers of inflammation (ST2, TNFRSF14, OPN, and AXL) and chemotaxis (RARRES2, MMP‑2, 
MEPE, and OPN). Notably, sex‑specific associations were observed, such as uridine (P = 0.003) in males. Furthermore, 
metabolomic features significantly associated with LVD included 1‑Methyl‑4‑imidazoleacetic acid (P = 0.015), COL1A1 
(P = 0.009), and MMP‑2 (P = 0.016), and pointing to metabolic shifts and heightened inflammation in patients with LVD.

Conclusion Our findings suggest that circulating metabolites may non‑invasively detect clinical and molecular dif‑
ferences in patients with LVD, providing insights into underlying disease pathways and potential therapeutic targets.
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Background
Cancer therapy-related cardiac dysfunction (CTRCD) is a 
significant and unpredicted consequence of cancer thera-
pies leading to premature morbidity and death among 
cancer survivors [1]. Treatments such as anthracyclines, 
trastuzumab, and radiation therapy have been linked to 
cardiac adverse events, including left ventricular dysfunc-
tion (LVD) and heart failure [2–6]. CTRCD is defined by 
a decrease in the left ventricular ejection fraction (LVEF) 
of > 10%, to a value less than the lower limit of normal, 
confirmed by repeat imaging [7, 8]. Assessing the risk of 
CTRCD is challenging due to the variability in frequency 
of imaging or biomarker sampling. Moreover, the onset 
of CTRCD is unpredictable, occurring anywhere from 
the first year to nearly a decade after treatment onset [9]. 
Despite the known risk, official guidelines for monitoring 
high-risk patients taking known cardiotoxic therapies are 
lacking in the U.S.

Biomarkers, like N-terminal pro-B-type natriuretic 
peptide (NT-proBNP), and troponins are recommended 
to monitor cardiac function during cancer therapy [10, 
11]. However, these biomarkers are the same as those 
used in cardiovascular disease (CVD) patients with-
out a history of cancer. Therefore, the field warrants 
CTRCD-specific biomarker discovery. For example, 
myeloperoxidase is associated with repeated exposure 
to anthracyclines and trastuzumab [12–14]. However, 
many of these studies have only investigated targeted 
biomarker panels that may only include a dozen proteins 
or metabolites. Including a broader range of markers is 
warranted to encompass the full picture of the crosstalk 
between cancer and the cardiovascular system. Ample 
basic science data underscores crosstalk between can-
cer, cardiovascular, and metabolic disease which suggests 
that we should include more comprehensive biological 
variables into risk-calculator models [15–17]. Research-
ers have already investigated the utility of multi-omic 
biomarker discovery for cardiovascular disease [18–20]. 
Therefore, we believe that multi-omic biomarkers discov-
ery approaches can be extended to determine CTRCD 
risk and is a promising approach in Cardio-Oncology 
[21–25].

Machine Learning models that use multi-omics fea-
tures can help identify robust biomarkers for CTRCD 
[26, 27]. In recent years, the diagnostic ability of machine 
learning models has been evaluated to predict coronary 
artery disease [28], death after myocardial infarction 
[29], hospitalization following heart failure with pre-
served ejection fraction [30], echocardiograph assess-
ment [31, 32], and detection of CTRCD [26, 33]. In this 
study, we applied classification models to assess the diag-
nostic capability of significant metabolites and proteins 
to distinguish cancer survivors with and without LVD. 

Compared to routine screening, we speculate that our 
multi-omics screening approach can improve upon car-
diotoxicity surveillance of cancer survivors.

Methods
Study participants
All consecutive patients with a history of cancer and 
exposure to cytotoxic chemotherapy and who had a 
clinically necessary echocardiogram assessment from 
12/2019 to 02/2022 were invited to enroll in our study 
(IRBs #11–194 and #19–1122) as described previously 
[34, 35]. Verbal and written informed consent were 
obtained. Participants were scheduled for a blood draw 
on the same day as their scheduled echocardiograph 
assessment. Blood samples were collected by registered 
healthcare professionals in the Lerner Research Institute 
Clinical Research Unit using collecting tubes contain-
ing EDTA. Vials were inverted 8–10 × and centrifuged at 
2000 g for 15 min at 4 C°. Plasma was aliquoted in 500 ul 
increments and frozen at −80 C°.

Clinical outcomes data acquisition
For each patient, 37 clinical variables commonly col-
lected during cardio-oncology clinical practices were 
used in this study (Table 1, Supplemental Tables 1–3): (a) 
10 general demographics; (b) 12 lab testing variables; (c) 
8 cardiac variables; and (d) 7 cancer variables. Detailed 
clinical characteristics of the entire cohort used are pro-
vided in Table 1.

LVD was used as the primary outcome and was defined 
by ejection fraction ≤ 55% by echocardiograph. LVEF 
was measured according to ASE guidelines using 2D or 
3D echocardiography where appropriate, in an echo-
cardiographic laboratory accredited by the Intersocietal 
Commission for the Accreditation of Echocardiogra-
phy Laboratories (ICAEL), at a center of excellence. All 
studies were over-read by experienced board-certified 
echo-trained cardiologists with full access to all clinically 
relevant information within the electronic medical notes 
and the clinically reported ejection fraction was used in 
this study. We recognize that the ESC cardio-oncology 
guidelines and EACVI chamber quantification guidelines 
define left ventricular dysfunction (LVD) using different 
thresholds, often LVEF < 50%. Given the small number 
of cases meeting the criteria for overt ventricular failure 
(LVEF < 40%), we opted to focus on a broader definition 
of left ventricular dysfunction (LVD) rather than failure 
to ensure adequate representation and statistical feasibil-
ity. Cardiac outcomes defined by ICD 9/10 codes were 
manually checked by looking at patient charts on Epic 
for accuracy, including atrial fibrillation (AF), coronary 
artery disease (CAD), heart failure myocardial infarc-
tion (MI), and stroke. According to the diagnosis date of 
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these 5 cardiac outcomes, we designated cardiac events 
diagnosed before cancer therapy as preexisting cardiac 
events, and those after cancer therapy as de novo LVD. 
All diagnoses defined by ICD 9/10 codes were further 
confirmed by a manual review of all medical records. All 
records to evaluate ejection fraction were taken after the 
start of therapy. A minority of participants had a record 
of an echocardiograph assessment within 6  months 
(6/51), or within two years (3/51) of their blood draw.

Proteomics
Fifty participant samples were sent out for proteom-
ics analysis (control = 40, LVD = 10). The selected frozen 

plasma samples were aliquoted in 100-μl samples and 
transferred to 96-well plates on dry ice, then sent to Olink 
proteomics for targeted proteomics analysis using the 
proximity extension assay technology. Olink multiplexing 
is based on the Proximity Extension Assay technology as 
previously described [36, 37]. Levels of 92 proteins were 
measured using the Olink Cardiovascular III panel, and 
the resulting data are provided in Normalized Protein 
eXpression (NPX) values. By internal cross-validation 
and interpolating controls, data are normalized and sub-
jected to rigorous quality control.

Table 1 Baseline cohort demographics

Abbreviations: IQR, interquartile range, LVD, left ventricular dysfunction, BMI, body mass index, SD, standard deviation, CVD cardiovascular disease, Gy gray

*Smoker: current or past

All No LVD LVD

n 52 40 12

Age (IQR) 60.8 (50.0–71.0) 60.2 (49.1–70.0) 67.4 (54.2–71.2)

BMI, kg/m2(IQR) 27.4 (23.9–30.9) 27.0 (23.2–32.0 27.7 (24.8–29.7)

Gender, n (%)

Male 23 (44) 14 (38) 5 (36)

Female 29 (56) 25 (63) 7 (64)

Race, n (%)

White 38 (73) 31 (78) 8 (67)

African American 6 (12) 6 (15) 0 (0)

Other 6 (12) 2 (5) 4 (33)

Ejection Fraction (mean ± SD) 60.0 ± 0.09 63.4 ± 0.04 47.90 ± 9.60

Cancer stage, n (%)

I 10 (19) 7 (18) 3 (25)

II 9 (17) 7 (18) 2 (17)

III 12 (23) 10 (25) 2 (17)

IV 10 (19) 7 (18) 3 (25)

Unknown 11 (21) 9 (23) 2 (17)

CVD risk factors

Smoker* 18 (35) 13 (33) 5 (42)

Hyperlipidemia 19 (37) 14 (35) 5 (42)

Diabetes 13 (25) 8 (20) 5 (42)

Cardiotoxic drugs total mg (IQR) (n)

Radiation All locations
Total Gy

952.2 (600.8–1355.6)
(7)

1000 (825.4–1062.5)
(3)

Left chest
Total Gy

95,037.5 (60,075–132780)
(4)

0
(0)

Anthracycline 363.5 (240.0–433.2)
(9)

560 (511.6–572.5)
(3)

Trastuzumab Total mg
(n)

7470.6 (5300–54168)
(12)

3975 (2362.5–5587.5)
(2)

Duration (months) 34 (11.0–44.0) 11.5 (11.25–11.5)

Immunotherapy Total mg 1400.0
(1)

448.8
(1)

Duration (months) 13 13
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Metabolomics
Metabolome measurements were carried out by Human 
Metabolome Technologies, Inc., using the Q353 basic 
scan panel (control = 40, LVD = 10). Metabolite extrac-
tion from plasma samples, metabolome analysis using a 
capillary-electrophoresis time-of-flight mass spectrome-
ter (CE-TOFMS), and data processing were all performed 
as described previously [38]. Briefly, sample processing 
and the analysis were conducted in randomized order. 
The signals in each sample were aligned under the tol-
erance of 100 p.p.m. in m/z and 0.5  min in migration 
time (MT). Detected peaks were annotated by compari-
son with a metabolome annotation library table, created 
based on the results of CE-TOFMS analysis of approxi-
mately 900 commercially available chemical standards. 
Peak areas were then evaluated and normalized to the 
area of internal standards (L-methionine sulfone and 
D-camphor-10-sulfonic acid in cation and anion modes, 
respectively; Solution ID, H3304-1002; HMT).

Evaluation of machine learning models
In this study, we evaluated machine learning algorithms 
including logistic regression (LR), random forest (RF), 
gradient boosting (GB), support vector machine (SVM), 
decision tree (DT), and k-nearest neighbor (KNN) (Sup-
plemental Table  6). The details of these approaches are 
provided in our previous study[26]. The models were 
trained, validated, and evaluated using the leave-one-out 
cross-validation (LOOCV) method. LOOCV is a spe-
cial case of k-fold cross-validation, where k is equal to 
the number of samples in the dataset. Two patients were 
excluded from the 50 total patients due to not having 
both metabolomic and proteomic data available, leaving 
48 patients for this analysis. A grid search was done to 
determine the optimal hyperparameters (Supplemen-
tal Table  7). Feature weights were determined using LR 
algorithm. Model performance was assessed using the 
area under the receiver operator characteristic (AUROC) 
and F1 score. To determine sensitivity and specificity, 
the threshold value producing the highest true positive 
rate and lowest false positive rate was chosen from the 
AUROC curve and the values were calculated accord-
ingly (Supplemental Table 6). All machine-learning anal-
yses were done using the Scikit-learn library version 1.0.2 
in Python 3 [39].

Statistical analysis
Student’s t-test or analysis of variance (ANOVA) was 
used for continuous normally distributed variables. The 
P-value for trend was computed with the use of Pearson 
correlation coefficient tests for continuous normally dis-
tributed, nonnormally distributed, and categoric vari-
ables, respectively. All analyses were performed with the 

use of R version 3.6.3 (R Foundation for Statistical Com-
puting). Two-sided tests were used, and P < 0.05 was con-
sidered significant.

Results
Patient demographics
52 patients referred to the cardio-oncology service at 
the Cleveland Clinic who met inclusion criteria were 
included in the study (Fig.  1). Patient demographics 
are listed in Table  1. Briefly, this study contained more 
females (n = 29, 56%) than males (n = 23, 44%) with an 
average age of 60.8 (IQR: 50.0–71.0) years and a BMI 
of 27.4 (IQR: 23.9–30.9  kg/m2). Participants identified 
as White (73%), African American (AA, 12%), or other 
(12%). Numerous cancer subtypes were reported, with 
the majority being breast (40%) and leukemia (12%) (Sup-
plemental Table 1). The following cardiovascular disease 
risk factors were also reported: smoking (35%), hyperlipi-
demia (37%), and diabetes (25%). The majority of cancer 
therapy classes reported were chemotherapy (65%) and 
targeted therapy (40%) (Table 1).

Our cohort was comprised of 12 LVD cases and 40 
controls. LVD was used as the primary outcome and 
was defined by ejection fraction ≤ 55% by echocardio-
graph (Methods). At the time of the study enrollment, 
31 patients had pre-existing cardiac conditions and 21 
patients developed CVD after their cancer diagnosis 
(Supplemental Table  2). The following CVD comorbidi-
ties defined by ICD9/10 codes and manually checked 
were reported: arrhythmia (control = 40%, LVD = 67%), 
coronary artery disease (control = 10%, LVD = 25%), 
heart failure (control = 3%, LVD = 50%), hyperten-
sion (control = 58%, LVD = 50%), myocardial infarction 
(control = 3%, LVD = 25%), and stroke (control = 5%, 
LVD = 8%). Data on routine labs were collected and 
shown in Supplemental Table  3. The only significant 
difference in labs was observed in NT-proBNP levels 
(P = 0.044) among LVD and control groups.

Plasma protein dysregulation in left ventricular 
dysfunction cases
We observed circulating proteins clustered with LVD 
cases (Supplemental Fig.  1). Overall, principal compo-
nent analysis showed LVD samples clustered together, 
and the control samples had more heterogenous expres-
sion (Fig.  2A). We identified 13 proteins significantly 
associated with EF ≤ 55%, including markers related to 
inflammation (ST2, TNFRSF14, OPN, and AXL) and 
chemotaxis (RARRES2, MMP-2, MEPE, and OPN) 
(Fig. 2B, Supplemental Fig. 1A, 2, Supplemental Informa-
tion 2). Furthermore, we determined which proteins were 
most correlated with LVD by calculating the Pearson 
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Correlation Coefficient (PCC) of each protein correlated 
with higher (top-quartile) or normal NT-proBNP expres-
sion (based on the panel NT-proBNP protein expression) 
and identified 21 significant (P < 0.05) proteins (Fig.  2C, 
Supplemental Fig.  3). We observed insulin growth fac-
tor binding protein 2 (IGFBP-2, P = 4.04 ×  10–6), tumor 
necrosis family members (TNF-R1, P = 0.0001, TNF-R2, 
P = 0.001, FAS, P = 2.91 ×  10–8, and LTBR, P = 0.0004, 
Fig. 2C, Supplemental Fig. 3) were highly associated. Fur-
thermore, several proteins related to mechanosensing by 
endothelial cells or platelet activation were also associ-
ated with LVD (MMP2, P = 0.16, and COL1A1, P = 0.009, 
Fig.  2B). After multiple testing corrections, we did not 
observe any differential proteins, likely as a result of an 
unbalanced cohort. Nevertheless, the data suggest that 
LVD samples experience could experience extracellular 
matrix remodeling to enable increased inflammatory cell 
infiltration.

Discovery of targeted plasma metabolomic biomarkers 
for LVD
Furthermore, we next investigated whether similar or 
new biochemical patterns of LVD could be detected. 

We performed a targeted metabolomics panel of 353 
polar metabolites. We identified 267 detectable metab-
olites, and 14 metabolites significantly (P < 0.05) dif-
fered in plasma from LVD patients and explained 94% 
of the variance among the samples (Fig.  3A, Supple-
mental Fig.  1B, Supplemental Information 3). Among 
these, we found a significant increase in metabolites 
relevant to muscle breakdown or cardiac remodeling 
including uridine and 3-methylhistidine (Fig.  3B-C). 
We also found metabolites relevant to inflammation 
and cancer progression like 1-methyl-4-imidazoleacetic 
acid, guanidinosuccinic acid (GSA), and symmetric 
dimethylarginine (SDMA) (Fig. 3B, C).

Recent work has indicated differences in cardiac bio-
markers among males and females [40–42]. Therefore, 
we performed a sex-specific analysis and found 59 dif-
ferentially expressed metabolites in males with LVD 
(Supplemental Fig.  4A, Supplemental Information 4) 
and 50 metabolites in females with LVD (Supplemen-
tal Fig. 4B, Supplemental Information 5). Among males, 
we found a significantly increased level of uridine 
(P = 0.003), and a trend towards increased N-acetylglu-
cosamine, and kynurenine (Kyn) in male cases (Fig. 3D, 
SupplementalFig.  4A). Among female cases, we found 

Fig. 1 Study design overview. Patients with a history of cancer who were consulted to the Cardio‑Oncology Center at Cleveland Clinic 
for echocardiograph assessment were asked to participate (n = 50). Plasma metabolites and proteins were used as features for the prediction of left 
ventricular dysfunction. We evaluated 6 classification methods including logistic regression, random forest, gradient boosting, k‑nearest neighbor, 
decision tree, and support vector machine
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a trend towards an increase in aminoisobutyric acid 
(P = 0.2505), kynurenine (P = 0.3925), and kynurenine/
tryptophan (Kyn/Trp) ratio (P = 0.1747) in the LVD 
group (Fig. 3E, Supplemental Fig. 4B). Overall, this data 
corresponds with the inflammatory signatures more 
prominent in females and corroborating our findings 
seen in the proteomics data to suggest differences in 
LVD phenotypes by sex.

Evaluation of machine leaning models for risk assessment 
of LVD using plasma multi‑omics profiles
To determine if our identified circulating markers can 
predict cardiac dysfunction (ejection fraction, EF ≤ 55%), 
we trained six classification models (logistic regres-
sion (LR), random forest (RF), gradient boosting (GB), 

support vector machine (SVM), decision tree (DT), and 
k-nearest neighbor (KNN)) using two feature sets (differ-
entially expressed metabolomics (n = 14) and proteom-
ics (n = 5), Fig. 4 and Supplemental Fig. 5). Performance 
characteristics for each model are summarized in Sup-
plemental Table  5. LR, RF, and GB models performed 
the best based on AUROC values (Fig.  4, Supplemental 
Fig. 5). For proteomics the AUROC values for each model 
were as follows- 0.745 for LR, 0.705 for RF, and 0.725 for 
GB. We observed that using significantly differentially 
expressed metabolites as features performed better with 
AUROC values of 0.968 for LR, 0.953 for RF, and 0.975 
for GB. The random forest model maintained optimal 
sensitivity (90%) and specificity (90%) for differentiating 
between LVD cases and control (Supplemental Table 5). 

Fig. 2 Plasma protein dysregulation in left ventricular dysfunction. A Principal component analysis of proteomics analysis for cancer survivors 
with cancer therapy‑related cardiac dysfunction (n = 10, blue) versus without (n = 40, red). B Differentially expressed proteins (P < 0.05) from affinity 
proteomics analysis in patients with LVD versus control. C Heatmap correlating cardiovascular proteins associated with NT‑proBNP (P < 0.05)
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Similar model performance was observed when using 
LASSO, Elastic Net, and XGB Boost for feature selec-
tion (Supplemental Fig.  5). By performing LOOCV, we 
ensured that each sample in the dataset had an opportu-
nity to be evaluated as a test case. This approach provides 

a reliable estimate of the model’s generalization perfor-
mance and helps to mitigate any bias that may arise from 
using a single train-test split. Furthermore, we deter-
mined that the metabolite features were enriched for glu-
tamate metabolism, as well as fatty-acid and pyrimidine 

Fig. 3 Plasma metabolite dysregulation in left ventricular dysfunction. A Principal component analysis of all significant metabolites combined. 
B Schematic of differentially expressed metabolites (red) converging to the glutamate synthesis pathway. C Overall top differentially expressed 
metabolites in LVD (n = 10) versus control patients (n = 40). D, E Sex‑specific differentially expressed metabolites in males (control = 16, LVD = 6, D) 
and females (control = 22, LVD = 4, E)
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metabolism pathways (Fig.  3B). Our findings suggest 
that patients with lowered ejection fraction experience a 
shift in metabolic demands that are shown by increased 
glutamate production, which can consequently explain 
increased ROS-induced inflammation. Here, we show 
that the application of metabolomics-based machine-
learning models may provide diagnostic utility to com-
plement current cardio-oncology practices.

Discussion
Researchers recognize the need to improve patient risk 
stratification techniques to enable early, non-invasive 
disease detection in cardio-oncology. Professional soci-
eties have also acknowledged the necessity for advanc-
ing cardiovascular risk assessment for cancer patients 
[43–46]. To date, biomarkers for myocardial injury are 
creatine kinase (CK)-MB, troponins, and natriuretic pep-
tides [25]. These markers indicate the release of cardiac 
enzymes that result in irreversible damage hours after 
onset [11]. Numerous clinical trials are currently assess-
ing biomarkers in cardio-oncology, underscoring the 
growing interest in leveraging clinical data to improve 
risk-calculator models [24]. This study aims to build upon 
the foundation of identifying putative CTRCD-related 
biomarkers, such as proteins and metabolites, for incor-
poration into risk prediction models, representing the 
first application of multi-omics-based machine learn-
ing models in cardio-oncology patients. We posit that 
this approach if validated in a larger cohort, can identify 
biomarkers that hold promise for identifying high-risk 
cancer patient groups who may require more intensive 
follow-up, enhanced surveillance, or tailored therapeutic 

strategies to mitigate their risk. Plasma markers allow for 
frequent, repeatable testing without imposing logistical 
burdens. This facilitates real-time monitoring of cardiac 
health during cancer treatment, enabling early detec-
tion of changes. Furthermore, we expect these outcomes 
to uncover critical biological mechanisms underlying 
CTRCD and related conditions. This could pave the way 
for the development of novel therapeutic targets, offering 
tailored interventions for this vulnerable patient niche.

In this study, we observed both proteins and metabo-
lites associated with LVD cases indicated a signature of 
chronic inflammation and shifts in metabolic demand, 
including elevated levels of SDMA, methylimidazole 
acetic acid, GSA, TNF family members, and high Kyn/
Trp ratio. Both oxidative stress and inflammation, estab-
lished markers of cardiotoxicity, were prominent fea-
tures. Notable, SDMA, conventionally a biomarker of 
renal dysfunction, has also been suggested as an inde-
pendent biomarker for cardiovascular diseases, but not 
in CTRCD cases [47–52]. Additionally, elevated plasma 
levels of methylimidazole acetic acid and guanidinosuc-
cinic acid (GSA) were observed in LVD cases, suggesting 
putative early artifacts of subclinical disease by increas-
ing vascular permeability. Many of the metabolites that 
provide the largest weights in our ML models (GSA, 
1-methylhistidine, 3-methylhistidine, 1-methyl-4-imida-
zoleacetic acid, γ-Glu-Val, and γ-Glu-Glu) converge to 
the glutamate metabolism pathway (Fig. 3B). Glutamate 
provides carbons to the tricarboxylic acid cycle (TCA) 
through α-ketoglutarate, which in turn is metabolized 
to amino acids, including alanine, aspartate, isoleucine, 
leucine, and valine- several of which are recognized 

Fig. 4 Evaluation of machine learning models to assess left ventricular dysfunction using plasma multi‑omics biomarkers. A‑C The area 
under the receiver operating curve (AUROC) for each classification model is shown. Differentially expressed metabolites (n = 3) (blue) and proteins 
(n = 14) (orange) were used as feature sets. The dotted line represents the theoretical baseline performance of a random feature. A Logistic 
Regression, B Random Forest, and C Gradient Boosting all achieved moderate to high performance
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markers of cardiovascular disease [53–55]. Our findings 
are consistent with previous studies. Thonusin et al. also 
noted increased glutamine in HER2-negative breast can-
cer patients 2-weeks after doxorubicin treatment, as well 
as reduced isovalerylcarnitine and isobutyrlcarnitine, 
which were significantly correlated with changes in LVEF 
and Troponin I respectively [56]. Similarly, in a cohort 
of 33 breast cancer patients treated with anthracyclines, 
increased TCA cycle intermediates (fumarate and suc-
cinate) and reduced tryptophan were observed in those 
who developed reduced ejection fraction [57]. While 
these findings highlight significant metabolic alterations 
linked to CTRCD, further longitudinal studies are essen-
tial to elucidate the temporal relationships between these 
metabolites and the onset and progression of disease.

Furthermore, patients with higher NT-proBNP also had 
increased circulating plasma levels of LTBR, tumor necro-
sis factor (TNF) family members like lymphotoxic beta 
receptor (LTBR), TNF receptors 1 and 2 (TNFR-1 and 2), 
and the anti-apoptotic receptor, Fas. Increased expression 
of Fas has been shown to increase with heart failure sever-
ity [58, 59]. Despite similar cardiac risk factors, patients 
with LVD exhibited an elevated inflammation profile not 
detectable by lab white blood cell counts alone, suggest-
ing that metabolomics and proteomics markers are more 
sensitive in detecting subclinical disease.

Additionally, we observed differences in immune sig-
natures in LVD cases, with a trend in elevated products 
from the kynurenine pathway, particularly prominent in 
female LVD cases. Pro-inflammatory cytokines activate 
tryptophan metabolism and, in turn, elevate circulat-
ing Kyn levels [60]. Kyn promotes T-regulatory cell dif-
ferentiation and further increases anti-inflammatory 
cytokine production often seen in aging, psychiatric, 
and chronic cardiometabolic diseases [60, 61]. Further-
more, we observed elevated uridine levels in males with 
LVD. Although obesity and insulin resistance have been 
linked to elevated uridine levels both in animals and 
humans [62, 63], an increase in plasma uridine is also 
suggested to follow mild cardiac ischemia and reperfu-
sion, as well as blood flow and arrhythmia [64]. The role 
of uridine in circulation is undetermined, but some data 
suggest that uridine may regulate vasodilation and can 
be a marker of insulin resistance [64, 65]. Sex differences 
in cardiovascular disease risk and clinical presentation 
have been well documented, but the biological expla-
nations remain underexplored [66–68]. An expanded 
study of the Framingham cohort sought to investigate 
the sex differences in circulating biomarkers in CVD and 
found that 86% of the biomarkers were significantly dif-
ferent (FDR < 0.05) [41, 69]. For example, women with 
heart failure (HF) present later and are more likely to 
have preserved left ventricular ejection fraction and a 

non-ischemic etiology of HF [70]. However, we observed 
an increased Kyn/Trp ratio in females which is typically 
a result of indoleamine 2,3-dioxygenase-1 (IDO1) activa-
tion, a byproduct of elevated pro-inflammatory cytokine 
signaling like interleukin-1B, lipopolysaccharides, and 
tumor necrosis factor (TNF) [61]. Collectively, our find-
ings, along with recent findings, underscore the urgency 
for future cardio-oncology studies and clinical practices 
to consider sex-specific risk assessment.

Finally, we applied classification machine learning mod-
els to test the diagnostic capability of distinguishing LVD 
cases from controls using differentially expressed proteins 
and metabolites. All outcomes received relatively high 
AUROC, outperforming proteomic features alone, sug-
gesting the potential of machine learning models for early 
detection of LVD specific to patients with a history of can-
cer. Machine learning models will become increasingly 
important as next-generation sequencing and big data sci-
ence become more integral to healthcare research. There-
fore, optimizing ‘smart’ methods to complement cancer 
management will be vital for the future of cardio-oncol-
ogy practices. Historically, biomarker discovery studies in 
cardio-oncology were focused on small targeted cardiac 
protein panels [13, 14, 71]. Our study applied an unbiased 
biomarker discovery approach using a metabolite panel of 
365 metabolites and 90 protein markers, vastly surpassing 
the markers studied in cardio-oncology cohorts. Expand-
ing the scope of variables fed into machine learning mod-
els will lead to more novel discoveries for understanding 
mechanisms of cardiotoxicity and understanding the ‘full 
picture.’ However, we acknowledge that the lack of repro-
ducibility across Cardio-Oncology cohorts can stem from 
variability in the methodologies used for biomarker detec-
tion and will require standardized approaches of metabo-
lites and proteins. Earlier proteomic studies have used 
traditional blood-derived cardiovascular panels, whereas 
current studies are using next-generation platforms, 
including proximity extension assays. Additionally, sev-
eral of the few studies that have sampled plasma metabo-
lites of CTRCD patients or research models have all used 
different metabolite detection methods like HPLC/MS, 
LC/Q-TOF MS, or capillary-electrophoreses-TOF/MS. 
The technical differences can explain differences in assay 
sensitivity, particularly for low-mass metabolites that are 
difficult to detect. Additionally, more attention will have 
to be placed on defining the time of evaluation, feature 
weights, and sample population to support reproducibil-
ity [24, 72].

Limitations
It is difficult to assess whether the biomarkers we have 
depicted can provide early detection of CTRCD. Pro-
spective studies paired with functional and longitudinal 
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data of patients before diagnosis of CTRCD will be neces-
sary to assess causality and will reduce the risk of overfit-
ting machine learning models, especially for studies that 
include less than 100 individuals. Our cohort is limited 
by being imbalanced between disease and control cases 
and includes several cancer subtypes and cancer drug 
exposures. We acknowledge a potential limitation posed 
by the small sample size (n = 10), which prevents the use 
of a separate test set, as well as the inclusion of several 
cancer subtypes and cancer drug exposures. To address 
this limitation, we used a leave-one-out cross-validation 
(LOOCV) approach. This method is well-suited for small 
datasets, as it maximizes the use of available data while 
providing robust model validation. Furthermore, we 
paired our findings with literature references that support 
that these markers have implications in cancer or cardio-
vascular disease. Future work will require independent 
validation and the inclusion of data augmentation tech-
niques to expand on existing patient data. Caution will 
be required for careful data harmonization and correc-
tion for confounding variables. Furthermore, most of the 
studies that have reported plasma metabolites or proteins 
in CTRCD patients have different assay methodologies, 
as previously discussed. Nonetheless, these findings pro-
vide a new biological perspective to cancer survivors with 
LVD.

Conclusion
Overall, we demonstrate that multi-omic profiling can 
reveal underlying inflammation and matrix remodeling 
markers that are not captured in traditional laboratory 
tests. We identified abnormalities in circulating proteins 
and metabolites that stratified cancer survivors by those 
with and without LVD. Applying advanced machine 
learning models can help validate whether matrix remod-
eling and inflammation-related metabolites and proteins 
can improve LVD detection.
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