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Abstract
Background Cardiac involvement is the primary driver of death in systemic light chain (AL) amyloidosis. However, 
the early prediction of cardiac death risk in AL amyloidosis remains insufficient.

Objectives We aimed to develop a novel prediction model and prognostic scoring system that enables early 
identification of these high-risk individuals.

Methods This study enrolled 235 patients with confirmed AL cardiac amyloidosis from three hospitals. Patients from 
the first hospital were randomly assigned to the training and internal validation sets in an 8:2 ratio, while the external 
validation set comprised patients from the other two hospitals. Participants were categorized into a cardiac death 
group and a non-cardiac death group (including survivors and those who died from other causes). Five different 
machine learning models were used to train model, and model performance was evaluated using receiver operating 
characteristic (ROC) curves, calibration curves, and decision curve analysis.

Results All five models showed excellent performance on the training and internal validation sets. In external 
validation, both the Logistic Regression (LR) and Random Forest models achieved an area under the ROC curve 
of 0.873 and 0.877, respectively, and exhibited superior calibration and decision curve analysis. Considering the 
comprehensive performance and clinical applicability, the LR model was selected as the final prediction model. 
The visualization results are ultimately presented in a nomogram. Further analyses were performed on the newly 
identified predictors.

Conclusions This prediction model enables early identification and risk assessment of cardiac death in patients with 
AL amyloidosis, exhibiting considerable predictive ability.
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Introduction
Systemic light chain (AL) amyloidosis is characterized 
by the deposition of amyloid fibrils in various tissues and 
organs, leading to progressive organ dysfunction and fail-
ure, ultimately leading to death [1]. Cardiac involvement, 
present in over 75% of AL amyloidosis patients, is the 
primary driver of mortality [1–3]. Despite recent thera-
peutic advancements [4, 5], the prognosis for patients 
with advanced cardiac involvement remains poor, with a 
median survival of less than one year [6, 7].

Current survival estimation systems, such as the 
Mayo 2004 and 2012 staging systems, use cardiac tro-
ponin I (cTnI), N-terminal pro-brain natriuretic peptide 
(NT-proBNP), and the difference between involved and 

uninvolved free light chain levels for risk stratification 
[8, 9]. Several studies have refined and developed the 
Mayo staging system, primarily used for overall prognos-
tic staging or renal outcome staging for AL amyloidosis, 
with a main emphasis on cardiac or multi-organ failure 
[10–13]. Although these systems are useful, they do not 
fully account for treatment protocols, changes in car-
diac structure and function, and deaths related to sudden 
cardiac events [14]. As a result, high-risk patients, par-
ticularly those prone to sudden cardiac death and deaths 
related to malignant arrhythmias, often remain unrecog-
nized in the early stages [15, 16].

This study aims to assess the risk of cardiac death in AL 
amyloidosis patients, focusing on worsening heart failure 
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(HF), sudden cardiac death, and malignant arrhythmias. 
Machine learning techniques are employed to develop a 
novel model and scoring system that predict the risk of 
cardiac death based on clinical characteristics at the first 
hospitalization, facilitating early identification of high-
risk individuals.

Methods
Study population and design
This retrospective, observational, multicenter study 
included 235 patients diagnosed with AL cardiac amy-
loidosis from three hospitals across China. Patients were 
recruited consecutively from Beijing Chaoyang Hospi-
tal (Hospital A; n = 157; January 2014 to May 2023) and 
from the First and Second Hospitals of Shanxi Medical 
University (Hospitals B and C; n = 78; January 2019 to 
May 2023). Data from Hospital A were utilized for model 
development, with an 8:2 split between the training and 
internal validation sets. Patients from Hospitals B and C 
served as external validation cohorts. The study adhered 
to the Declaration of Helsinki and was approved by the 
Institutional Review Board of Beijing Chaoyang Hos-
pital, with written informed consent obtained from all 
participants.

Inclusion criteria: (1) Age ≥ 18 years; (2) Diagnosis of 
AL amyloidosis with cardiac involvement based on inter-
national consensus criteria [17, 18]; (3) Availability of 
comprehensive medical records.

Exclusion criteria: (1) Significant incompleteness of 
baseline data, defined as more than 10% of variables 
missing; (2) Follow-up duration of less than 1 year.

Data extraction, follow-up, and definition of mode of death
Comprehensive clinical data for all patients were col-
lected for machine learning feature extraction. In order to 
emphasize the early prediction capabilities of this model, 
all data were collected during initial hospitalization.

Patients were followed up for at least 12 months, from 
April to May 2024, via telephone or clinic visits, with 
the final follow-up deadline set as May 31, 2024. Mode 
of death was determined from medical records, hospi-
tal death reports, and death certificates. If necessary, 
further medical information about events that occurred 
at the time of death was obtained from interviews with 
the patient’s primary care provider, family members, or 
witnesses. The mode of death was defined as the first 
clinically relevant event preceding the death. Cardiac 
deaths, including HF death (worsening HF), sudden car-
diac death, cardiogenic shock, and fatal arrhythmias, 
were classified as positive cases and included in the car-
diac death group. Survivors and patients who died from 
non-cardiac causes, such as pulmonary infection, sepsis, 
or renal failure, were collectively categorized as the non-
cardiac death group.

Feature selection, model training and performance 
evaluation
This study employed five machine learning methods 
for model training: Logistic Regression (LR), Classifica-
tion and Regression Tree (CART), Random Forest (RF), 
Support Vector Machine (SVM), and eXtreme Gradi-
ent Boosting (XGBoost). Before the feature extraction 
of machine learning, univariate analyses were conducted 
on all clinical variables to identify those with statisti-
cally significant differences between the cardiac death 
and non-cardiac groups (p < 0.05). Subsequently, LASSO 
regression was used for feature selection in the LR model, 
while recursive feature elimination was applied for the 
RF and SVM models. The XGBoost and CART models 
were trained using all variables. Model performance was 
evaluated using receiver operating characteristic (ROC) 
curves, calibration curves, decision curve analysis (DCA), 
radar charts (including area under the curve [AUC], 
accuracy, precision, recall, specificity, and F1-score), and 
confusion matrices. Feature importance ranking plots 
and the nomogram were utilized to visualize the model.

After selecting the optimal model, the predictive model 
was compared against previously established classic stag-
ing systems, including the Mayo Clinic 2004 Staging Sys-
tem, Mayo Clinic 2012 Staging System, and European 
Modification 2015 of Mayo Staging System, to evaluate 
the clinical value of the newly developed model. Given 
that these legacy staging systems express outcomes as 
median survival times (MST), we assumed patients’ sur-
vival time followed an exponential distribution (constant 
hazard rate) under non-intervention conditions. The 
survival probabilities were derived using the conversion 
formula:

 S (t) = 2−t/MST

where t represents target time and MST denotes median 
survival time. This transformation enabled direct com-
parison with survival probabilities generated by our 
model. The comparative results were visualized through 
ROC curve analysis and multidimensional radar charts.

Statistical analysis
Statistical analysis and data processing were conducted 
using R software. Measurement data were tested for nor-
mality and homogeneity of variance. Variables following 
a normal distribution were presented as mean ± standard 
deviation and analyzed using the independent samples 
t-test. Non-normally distributed variables were pre-
sented as median (interquartile range [IQR]) and ana-
lyzed using non-parametric tests. Enumeration data 
were expressed as rates and analyzed using the χ² test or 
Fisher’s exact test. A p-value < 0.05 was considered statis-
tically significant.
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Study variable definitions
This study incorporated a wide range of clinical data 
variables. Based on general consensus and informed by 
previous literature, clear and consistent definitions were 
established for these variables. Comprehensive definitions 
for all variables are provided in Supplementary Material 1.

Results
Patient characteristics
A total of 230 patients were ultimately included in the 
study after excluding 5 who did not meet the eligibility 
criteria (Fig. 1). In the training cohort (124 patients), 49 
(39.5%) died due to cardiac causes, 10 (8.0%) died from 

Fig. 1 Study flowchart
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other causes, and 65 (52.4%) remained alive. Detailed 
baseline characteristics of this series are summarized in 
Table 1.

Model development
A total of 123 clinical features were collected as variables, 
and all underwent univariate analysis in the training set, 
with 66 variables showing statistically significant dif-
ferences. Similar or collinear variables were eliminated, 
resulting in a total of 54 variables being included in the 
subsequent analysis. The comparison of feature differ-
ences between the training set and the internal valida-
tion set was not statistically significant, suggesting that 
the random grouping was appropriate (Supplementary 
Material 2). For the LR model, LASSO regression was 
employed for optimal feature selection (Fig.  2a and b), 
which resulted in the incorporation of 12 final features. 
Recursive feature elimination determined that the RF 
and SVM models required 53 and 26 optimal features, 
respectively, with the details provided in Fig. 2c and d.

Model verification and performance evaluation
Discrimination
The ROC curves of the five models in the three data-
sets are illustrated in Fig.  3a, b and c. The AUC for all 
five models in the training set exceeded 0.88, indicat-
ing excellent model fit. However, the RF and XGBoost 
models exhibited potential overfitting issues due to their 
excessively high AUCs. Notably, in external validation, all 
models demonstrated strong discriminative ability, with 
AUCs ranging from 0.817 to 0.877. DeLong’s test was 
employed to compare the AUCs among these models, 
revealing no significant statistical differences (Supple-
mentary Material 3).

Calibration
The five models demonstrated excellent calibration capa-
bility in the training set, as evidenced by their low Brier 
scores (BS) of less than 0.25. Among them, the RF, SVM, 
and XGBoost models achieved notably low BS values of 
0.021, 0.048, and 0.002, respectively (Fig.  3d). Notably, 
the LR and RF models showed the best calibration per-
formance, consistently displaying the lowest BS values in 
both the internal and external validation sets (Fig. 3e and 
f ).

Decision curve analysis
The DCA results (Fig.  3g–i) show that all five models 
provide a net benefit across the entire threshold range 
of cardiac death probability in the training set. In inter-
nal validation, the LR model outperforms others by 
exhibiting net benefits throughout the entire thresh-
old probability range, while the remaining models cover 
approximately 70%. In external validation, the RF model 

demonstrates net benefits over 86% of the threshold 
probabilities, with stable variation, signifying robust 
generalization ability. The LR model displays a clinical 
net benefit over 72% of the threshold probability spec-
trum (ranking third), yet it surpasses the RF model’s net 
benefit markedly within the 0-70% cardiac death prob-
ability interval. A limitation of the LR model is its overly 
optimistic predictions regarding freedom from cardiac 
death for patients when their cardiac death risk is situ-
ated within the 73-98% threshold probability band. Nev-
ertheless, the LR model demonstrates relatively stable 
and consistent DCA results across the three datasets. 
The ranges of threshold probabilities corresponding to 
net benefits, as derived from the DCA of the five mod-
els under external validation, are summarized in Supple-
mentary Material 4.

Radar chart and confusion matrix
The Radar Chart (Fig. 3j–l) visualizes the comprehensive 
performance of the models, with all detailed data pre-
sented in Supplementary Material 5. In the training set, 
the RF and XGBoost models nearly attain a perfect score, 
standing out as the highest-fitting models. The internal 
validation highlights the LR model as significantly out-
performing other models across all performance indi-
cators. External validation suggests largely comparable 
performances among the five models, with the LR, RF, 
and SVM models performing slightly better.

The confusion matrix for the LR model in internal 
validation (the best-performing model) and the confu-
sion matrices for all models in external validation are 
presented in Fig. 4. Notably, the LR model has a remark-
ably high true positive rate of 97%. Both the RF and SVM 
models share the highest true negative rate of 80%.

Visualization and nomogram
The RF model identified left ventricular ejection frac-
tion (LVEF) as the strongest predictor of cardiac mortal-
ity, followed by NT-proBNP, BNP, and New York Heart 
Association (NYHA) functional class (Fig. 2e). Structural 
cardiac parameters including LV end-systolic diameter, 
early/late peak diastolic mitral inflow velocity (E/A) ratio, 
and left atrial dimensions, along with cTnI levels and 
lowest recorded mean arterial pressure (MAP) collec-
tively contributed to risk stratification.

The nomogram, a visual presentation of the LR model, 
integrated 12 independent predictors, with impaired car-
diac function (reduced LVEF, wall motion abnormalities, 
elevated E/A ratio), biomarker elevations (NT-proBNP 
and β2-microglobulin (β2M)), clinical decompensation 
signs (NYHA III-IV, syncope/presyncope, pericardial 
effusion, decreased MAP), and electrical instability (con-
comitant VA, left axis deviation (LAD) on ECG) contrib-
uting predominantly. Notably, the absence of autologous 
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Variables Total (n = 124) Cardiac death (n = 49) Non-cardiac death 
(n = 75)

p 
value

Demographic and Clinical Characteristics
 Age at diagnosis (years), Mean ± SD 59.87 ± 9.24 59.82 ± 9.92 59.91 ± 8.84 0.958
 Age at symptom onset (years), Mean ± SD 59.08 ± 9.30 59.12 ± 9.65 59.05 ± 9.14 0.968
 Male sex, n (%) 80 (64.52) 32 (65.31) 48 (64.00) 0.882
 Height (cm), Median (IQR) 167.00 (160.00, 170.25) 165.00 (160.00, 171.00) 167.00 (160.00, 170.00) 0.632
 Weight (kg), Median (IQR) 64.00 (58.00, 71.25) 64.00 (57.50, 71.00) 64.00 (58.00, 72.00) 0.814
 Body mass index (kg/m²), Median (IQR) 23.19 (21.68, 25.38) 23.02 (21.88, 24.97) 23.34 (21.47, 26.08) 1.000
 Body surface area (m²), Median (IQR) 1.69 (1.56, 1.81) 1.67 (1.56, 1.82) 1.69 (1.59, 1.80) 0.671
 Mayo Clinic 2004 Staging System < 0.001
  Stage 1, n (%) 15 (12.1) 0 (0.0) 15 (20.0)
  Stage 2, n (%) 60 (48.4) 20 (40.8) 40 (53.3)
  Stage 3, n (%) 49 (39.5) 29 (59.2) 20 (26.7)
 Mayo Clinic 2012 Staging System < 0.001
  Stage 1, n (%) 33 (26.6) 3 (6.1) 30 (40.0)
  Stage 2, n (%) 34 (27.4) 14 (28.6) 20 (26.7)
  Stage 3, n (%) 49 (39.5) 27 (55.1) 22 (29.3)
  Stage 4, n (%) 8 (6.5) 5 (10.2) 3 (4.0)
 European Modification 2015 of Mayo Staging System < 0.001
  Stage 1, n (%) 15 (12.1) 0 (0.0) 15 (20.0)
  Stage 2, n (%) 60 (48.4) 20 (40.8) 40 (53.3)
  Stage 3a, n (%) 32 (25.8) 19 (38.8) 13 (17.3)
  Stage 3b, n (%) 17 (13.7) 10 (20.4) 7 (9.3)
 NYHA functional class, Median (IQR) 2.00 (1.00, 2.25) 2.00 (2.00, 3.00) 1.00 (1.00, 2.00) < 0.001
 Time from symptom onset to diagnosis (months), Median 
(IQR)

6.00 (2.00, 12.00) 6.00 (2.00, 12.00) 6.00 (2.50, 12.00) 0.841

 Cardiac manifestations as initial presentation, n (%) 34 (27.42) 23 (46.94) 11 (14.67) < 0.001
 History of hypotension, n (%) 21 (16.94) 13 (26.53) 8 (10.67) 0.021
 Syncope/presyncope episodes, n (%) 10 (8.06) 9 (18.37) 1 (1.33) 0.002
 Initial admission MAP (mmHg), Mean ± SD 90.22 ± 12.12 87.91 ± 14.05 91.72 ± 10.51 0.108
 Initial admission SBP (mmHg), Median (IQR) 123.00 (110.00, 132.50) 120.00 (99.00, 135.00) 125.00 (114.00, 131.50) 0.181
 Initial admission DBP (mmHg), Median (IQR) 75.00 (68.00, 80.00) 70.00 (66.00, 80.00) 77.00 (70.00, 80.00) 0.069
 Lowest recorded MAP (mmHg), Median (IQR) 85.67 (72.92, 92.33) 76.67 (68.33, 86.67) 87.00 (82.00, 93.33) 0.001
 Lowest recorded SBP (mmHg), Median (IQR) 118.00 (97.00, 125.25) 100.00 (90.00, 120.00) 120.00 (110.00, 126.00) 0.005
 Lowest recorded MAP (mmHg), Median (IQR) 70.00 (60.00, 76.00) 62.00 (56.00, 70.00) 71.00 (67.00, 78.00) 0.001
 Hypertension, n (%) 52 (41.94) 23 (46.94) 29 (38.67) 0.361
 Coronary artery disease, n (%) 23 (18.55) 11 (22.45) 12 (16.00) 0.366
 Myocardial infarction history, n (%) 6 (4.84) 3 (6.12) 3 (4.00) 0.912
 Chronic kidney disease, n (%) 54 (43.55) 27 (55.10) 27 (36.00) 0.036
 Hepatic dysfunction, n (%) 21 (16.94) 13 (26.53) 8 (10.67) 0.021
 Hyperlipidemia, n (%) 45 (36.29) 16 (32.65) 29 (38.67) 0.496
 Multiple myeloma, n (%) 81 (65.32) 33 (67.35) 48 (64.00) 0.702
 Chemotherapy, n (%) 98 (79.03) 34 (69.39) 64 (85.33) 0.033
 Autologous stem cell transplantation, n (%) 14 (11.29) 1 (2.04) 13 (17.33) 0.009
Organs with amyloid deposition
 Renal involvement, n (%) 102 (82.26) 43 (87.76) 59 (78.67) 0.195
 Soft tissue involvement, n (%) 30 (24.19) 10 (20.41) 20 (26.67) 0.426
 Neurological involvement, n (%) 38 (30.65) 10 (20.41) 28 (37.33) 0.046
 Gastrointestinal involvement, n (%) 6 (4.84) 4 (8.16) 2 (2.67) 0.334
 Pulmonary involvement, n (%) 3 (2.42) 1 (2.04) 2 (2.67) 1.000
 Hepatic involvement, n (%) 25 (20.16) 16 (32.65) 9 (12.00) 0.005
 Total number of involved organs, Median (IQR) 2.00 (2.00, 3.00) 3.00 (2.00, 3.00) 2.00 (2.00, 3.00) 0.131
ECG features
 Heart rate (bpm), Mean ± SD 85.38 ± 14.05 84.82 ± 11.92 85.75 ± 15.35 0.720

Table 1 Patient characteristics of the training set
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Variables Total (n = 124) Cardiac death (n = 49) Non-cardiac death 
(n = 75)

p 
value

 PR interval (ms), Mean ± SD 159.79 ± 26.32 165.59 ± 25.89 156.00 ± 26.08 0.047
 P-wave duration (ms), Median (IQR) 90.00 (84.00, 96.00) 90.00 (86.00, 96.00) 90.00 (82.00, 98.00) 0.840
 QRS duration (ms), Median (IQR) 88.50 (82.00, 94.00) 92.00 (84.00, 98.00) 86.00 (82.00, 92.00) 0.003
 Corrected QT interval (ms), Median (IQR) 428.00 (404.00, 450.50) 435.00 (414.00, 471.00) 425.00 (403.00, 443.50) 0.079
 QRS axis (degrees), Median (IQR) 30.50 (-39.00, 58.00) 4.00 (-54.00, 50.00) 35.00 (-5.00, 59.00) 0.094
 R-wave amplitude in lead V5 (mV), Median (IQR) 0.96 (0.58, 1.38) 0.80 (0.34, 1.08) 1.12 (0.68, 1.52) 0.006
 S-wave amplitude in lead V1 (mV), Median (IQR) 0.65 (0.45, 0.93) 0.65 (0.49, 0.92) 0.63 (0.41, 0.94) 0.838
 Sokolow-Lyon index (mV), Median (IQR) 1.46 (0.79, 2.52) 1.23 (0.55, 2.48) 1.56 (1.07, 2.54) 0.073
 R-wave in V5/S-wave in V1 ratio, Median (IQR) 1.63 (1.13, 2.21) 1.45 (0.98, 1.92) 1.74 (1.21, 2.35) 0.024
 Minimum limb lead voltage (mV), Median (IQR) 0.20 (0.15, 0.30) 0.20 (0.10, 0.30) 0.25 (0.20, 0.30) 0.127
 Maximum limb lead voltage (mV), Median (IQR) 0.65 (0.45, 0.85) 0.55 (0.45, 0.80) 0.70 (0.50, 0.88) 0.092
 Mean limb lead voltage (mV), Median (IQR) 0.45 (0.33, 0.59) 0.42 (0.29, 0.56) 0.47 (0.36, 0.60) 0.149
 QRS axis deviation (degrees), Median (IQR) 35.00 (14.00, 84.00) 68.00 (26.00, 99.00) 32.00 (11.50, 61.50) 0.009
 Low Sokolow-Lyon index (< 1.5), n (%) 56 (45.16) 28 (57.14) 28 (37.33) 0.030
 Low limb lead voltage, n (%) 56 (45.16) 30 (61.22) 26 (34.67) 0.004
 Low precordial lead voltage, n (%) 29 (23.39) 17 (34.69) 12 (16.00) 0.016
 Pseudo-infarct pattern, n (%) 39 (31.45) 21 (42.86) 18 (24.00) 0.027
 Impaired R-wave progression, n (%) 39 (31.45) 21 (42.86) 18 (24.00) 0.027
 Arrhythmias, n (%) 31 (25.00) 22 (44.90) 9 (12.00) < 0.001
 Bradycardia and conduction abnormalities, n (%) 33 (26.61) 23 (46.94) 10 (13.33) < 0.001
 T-wave abnormality, n (%) 51 (41.13) 28 (57.14) 23 (30.67) 0.003
 ST-segment abnormalities, n (%) 19 (15.32) 8 (16.33) 11 (14.67) 0.802
 Fragmented QRS complexes, n (%) 12 (9.68) 7 (14.29) 5 (6.67) 0.275
 Atrial arrhythmias, n (%) 20 (16.13) 11 (22.45) 9 (12.00) 0.122
 Ventricular arrhythmias, n (%) 16 (12.90) 14 (28.57) 2 (2.67) < 0.001
 Left axis deviation, n (%) 44 (35.48) 23 (46.94) 21 (28.00) 0.031
Echocardiographic features
 LV end-diastolic diameter (mm), Mean ± SD 45.79 ± 5.36 45.71 ± 6.22 45.85 ± 4.75 0.901
 LV end-systolic diameter (mm), Median (IQR) 29.00 (26.75, 32.25) 31.00 (29.00, 36.00) 28.00 (26.00, 30.50) < 0.001
 LVEF (%), Median (IQR) 64.00 (56.75, 69.00) 56.00 (47.00, 65.00) 66.00 (62.00, 71.00) < 0.001
 Left atrial anteroposterior diameter (mm), Mean ± SD 38.86 ± 5.51 41.22 ± 4.57 37.32 ± 5.56 < 0.001
 Left atrial transverse diameter (mm), Mean ± SD 40.74 ± 5.80 42.60 ± 4.51 39.53 ± 6.24 0.002
 Left atrial longitudinal diameter (mm), Median (IQR) 53.00 (49.00, 56.00) 54.00 (53.00, 57.00) 50.00 (46.00, 53.00) < 0.001
 Left atrial diameter index, Mean ± SD 23.00 ± 3.58 24.59 ± 3.60 21.96 ± 3.18 < 0.001
 Right atrial transverse diameter (mm), Median (IQR) 36.00 (33.00, 39.00) 38.00 (36.00, 42.00) 35.00 (32.50, 37.00) < 0.001
 Right atrial anteroposterior diameter (mm), Median (IQR) 47.00 (44.00, 51.00) 50.00 (47.00, 54.00) 46.00 (42.85, 50.00) < 0.001
 Right ventricular diameter (mm), Median (IQR) 33.00 (30.00, 37.00) 35.00 (32.00, 38.00) 31.00 (29.00, 36.00) 0.002
 LV mass (g), Median (IQR) 201.33 (164.45, 257.14) 216.55 (188.02, 262.62) 189.19 (147.83, 243.88) 0.007
 LV mass index (g/m²), Median (IQR) 118.96 (95.40, 150.37) 130.87 (108.14, 158.08) 106.72 (87.73, 143.43) 0.005
 Interventricular septal thickness (mm), Median (IQR) 12.30 (10.00, 14.00) 13.00 (11.30, 15.00) 12.00 (10.00, 13.65) 0.008
 LV posterior wall thickness (mm), Median (IQR) 11.40 (10.00, 13.00) 12.00 (11.00, 15.00) 11.00 (10.00, 12.40) 0.002
 LV relative wall thickness, Median (IQR) 0.49 (0.42, 0.58) 0.54 (0.43, 0.64) 0.48 (0.40, 0.56) 0.011
 LV hypertrophy, n (%) 65 (52.42) 34 (69.39) 31 (41.33) 0.002
 Aortic diameter (mm), Median (IQR) 31.00 (29.00, 33.00) 31.00 (29.00, 33.00) 31.00 (29.50, 33.00) 0.937
 Ascending aorta diameter (mm), Mean ± SD 33.45 ± 3.81 33.53 ± 3.86 33.40 ± 3.79 0.856
 Pulmonary artery diameter (mm), Median (IQR) 25.00 (24.00, 27.00) 26.00 (24.00, 28.00) 25.00 (23.00, 26.50) 0.006
 E-wave (m/s), Median (IQR) 89.50 (73.00, 105.25) 97.00 (84.00, 115.00) 85.00 (66.50, 95.50) < 0.001
 A-wave (m/s), Mean ± SD 81.94 ± 26.86 74.80 ± 29.10 86.60 ± 24.37 0.016
 E/A ratio, Median (IQR) 1.15 (0.76, 1.46) 1.29 (1.14, 1.92) 0.86 (0.73, 1.21) < 0.001
 Pericardial effusion (grade), Median (IQR) 0.00 (0.00, 2.00) 1.00 (0.00, 2.00) 0.00 (0.00, 1.00) < 0.001
 Valvular regurgitation (grade), Median (IQR) 2.00 (1.00, 2.00) 2.00 (2.00, 3.00) 2.00 (1.00, 2.00) < 0.001
 Valvular thickening, n (%) 17 (13.71) 6 (12.24) 11 (14.67) 0.701

Table 1 (continued) 
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stem cell transplantation (ASCT) also emerged as one of 
the prognostic determinants. Risk stratification thresh-
olds emerged with nomogram scores: 31 points con-
ferred 1% mortality risk versus 99% at 216 points (Fig. 5).

After comparing from different perspectives, the LR 
and RF models outperformed other models in terms of 

performance, with both demonstrating considerable and 
comparable predictive capabilities. Considering practi-
cal clinical application, the LR model’s nomogram offers 
greater applicability and interpretability. Therefore, the 
LR model was selected as the final prediction model.

Variables Total (n = 124) Cardiac death (n = 49) Non-cardiac death 
(n = 75)

p 
value

 Wall motion abnormality, n (%) 25 (20.16) 19 (38.78) 6 (8.00) < 0.001
 LV systolic dysfunction, n (%) 25 (20.16) 21 (42.86) 4 (5.33) < 0.001
 LV diastolic dysfunction, n (%) 94 (75.81) 39 (79.59) 55 (73.33) 0.426
 Right ventricular systolic dysfunction, n (%) 12 (9.68) 8 (16.33) 4 (5.33) 0.087
 Pulmonary arterial hypertension, n (%) 34 (27.42) 21 (42.86) 13 (17.33) 0.002
Combined ECG and echocardiographic parameters
 Limb leads QRS score to LV wall thickness ratio, Median (IQR) 0.23 (0.16, 0.33) 0.20 (0.12, 0.30) 0.24 (0.17, 0.34) 0.011
 Sokolow-Lyon index / LV posterior wall thickness, Median 
(IQR)

1.50 (0.92, 2.05) 1.23 (0.72, 1.68) 1.73 (1.00, 2.22) 0.004

 Sokolow-Lyon index / LV relative wall thickness, Median (IQR) 32.13 (20.68, 49.79) 28.75 (15.05, 40.00) 39.75 (23.04, 53.41) 0.010
 Sokolow-Lyon index / LV mass, Median (IQR) 0.08 (0.05, 0.12) 0.07 (0.04, 0.10) 0.11 (0.06, 0.13) 0.001
 Voltage-to-mass ratio, Median (IQR) 0.14 (0.09, 0.21) 0.11 (0.07, 0.15) 0.17 (0.10, 0.23) 0.001
Laboratory examination
 Cardiac troponin I (ng/mL), Median (IQR) 0.06 (0.02, 0.21) 0.12 (0.05, 0.25) 0.03 (0.01, 0.11) 0.002
 BNP (pg/mL), Median (IQR) 403.92 (133.52, 1339.66) 1202.24 (407.20, 

2986.00)
202.00 (72.98, 724.00) < 0.001

 NT-proBNP (pg/mL), Median (IQR) 3149.00 (849.83, 
7746.75)

6204.00 (3846.00, 
13306.25)

1537.50 (456.10, 
4525.00)

< 0.001

 Serum albumin (g/L), Median (IQR) 32.90 (26.65, 36.52) 33.60 (29.40, 36.50) 32.30 (24.65, 36.60) 0.297
 Serum globulin (g/L), Median (IQR) 25.50 (20.17, 32.85) 27.50 (21.20, 32.40) 24.00 (19.70, 32.90) 0.252
 Serum total protein (g/L), Median (IQR) 59.80 (50.43, 69.60) 62.30 (55.30, 68.80) 59.00 (48.55, 70.10) 0.342
 Albumin-to-globulin ratio, Mean ± SD 1.24 ± 0.54 1.22 ± 0.50 1.26 ± 0.57 0.690
 Serum creatinine (µmol/L), Median (IQR) 85.00 (65.40, 150.53) 96.50 (71.90, 216.80) 81.60 (63.90, 123.65) 0.070
 Creatinine clearance (mL/min), Median (IQR) 71.10 (39.38, 93.36) 68.92 (26.50, 79.18) 74.42 (50.85, 96.12) 0.068
 β2-Microglobulin (mg/L), Median (IQR) 4.83 (2.94, 7.35) 5.30 (3.10, 9.86) 4.14 (2.90, 6.29) 0.037
 ALT (U/L), Median (IQR) 18.00 (13.00, 26.00) 18.00 (12.00, 29.00) 18.00 (13.50, 23.50) 0.446
 AST (U/L), Median (IQR) 22.50 (17.00, 29.00) 24.00 (19.00, 36.00) 22.00 (16.00, 25.00) 0.024
 AST-to-ALT ratio, Median (IQR) 1.27 (0.95, 1.55) 1.33 (1.00, 1.57) 1.21 (0.95, 1.52) 0.421
 Serum calcium (mmol/L), Median (IQR) 2.16 (2.01, 2.29) 2.16 (2.01, 2.28) 2.17 (2.01, 2.31) 0.988
 Hemoglobin (g/L), Median (IQR) 107.50 (83.50, 126.50) 106.00 (82.00, 118.00) 113.00 (84.50, 132.00) 0.147
 White blood cell count (×10⁹/L), Median (IQR) 6.01 (5.00, 7.62) 5.71 (4.98, 7.70) 6.09 (5.08, 7.50) 0.609
 Platelet count (×10⁹/L), Median (IQR) 198.50 (138.00, 272.00) 168.00 (117.00, 236.00) 213.00 (164.00, 283.50) 0.014
 Immunoglobulin G (mg/dL), Median (IQR) 666.50 (414.25, 1072.50) 769.00 (451.00, 1320.00) 643.00 (378.50, 889.00) 0.149
 Immunoglobulin A (mg/dL), Median (IQR) 62.90 (31.15, 132.25) 53.30 (31.00, 93.40) 68.40 (32.55, 202.50) 0.138
 Immunoglobulin M (mg/dL), Median (IQR) 31.65 (20.12, 48.82) 31.80 (19.20, 45.00) 31.50 (22.25, 50.85) 0.590
 Immunoglobulin E (IU/mL), Median (IQR) 18.50 (17.70, 40.10) 18.50 (17.70, 42.80) 19.40 (17.70, 39.00) 0.739
 Serum free light chain-λ (mg/dL), Median (IQR) 318.50 (195.50, 588.25) 413.00 (240.00, 715.00) 269.00 (182.00, 440.00) 0.002
 Serum free light chain-κ (mg/dL), Median (IQR) 450.00 (295.25, 617.50) 402.00 (266.00, 526.00) 492.00 (322.00, 653.00) 0.022
 Urine free light chain-λ (mg/dL), Median (IQR) 5.44 (5.00, 27.63) 16.50 (5.00, 48.40) 5.00 (5.00, 14.50) 0.005
 Urine free light chain-κ (mg/dL), Median (IQR) 3.98 (1.85, 16.83) 4.20 (1.85, 16.90) 3.51 (1.85, 15.75) 0.985
 Difference of free light chains (mg/dL), Median (IQR) 248.50 (102.50, 536.75) 244.00 (64.00, 542.00) 249.00 (116.00, 504.00) 0.354
 Free light chain ratio, Median (IQR) 1.92 (1.34, 3.13) 1.72 (1.17, 3.79) 2.01 (1.39, 3.07) 0.200
t: t-test; Z: Mann-Whitney test; χ²: Chi-square test; SD: Standard deviation; IQR: Interquartile range

Creatinine clearance is calculated by the Cockcroft-Gault formula

NYHA: New York Heart Association; MAP: mean arterial pressure; SBP: systolic blood pressure; DBP: diastolic blood pressure; LVEF: left ventricular ejection fraction; 
E-wave: Early diastolic mitral inflow velocity; A-wave: Late diastolic mitral inflow velocity; ALT: alanine aminotransferase; AST: aspartate aminotransferase

Table 1 (continued) 
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Fig. 2 (See legend on next page.)
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Comparison of performance with established staging 
systems
The survival probability conversion results for the estab-
lished staging systems are presented in Supplementary 
Material 6. Our LR model achieved significantly higher 
AUC values than all existing systems in both Cohort 1 
(training and internal validation set, n = 155) and Cohort 
2 (external validation set, n = 75). These results are visual-
ized in Fig. 6.

Additional analyses and noteworthy findings
As an additional analysis of this study, a descriptive statis-
tical analysis was performed on the amalgamated cohort 
encompassing three distinct datasets. This analysis aimed 
to delineate the demographic and clinical profile of indi-
viduals with AL cardiac amyloidosis. Details are provided 
in Supplementary Material 7.

Furthermore, our prediction model analysis revealed 
several noteworthy findings:

Firstly, LAD was consistently associated with an 
increased risk of cardiac death in multiple models. In the 
amalgamated cohort, 27.4% had LAD, with 95.2% (60/63) 
showing a typical left anterior fascicular block pat-
tern. There was a significant difference in LAD between 
patients with cardiac death and those without (40.0% vs. 
18.5%, p < 0.001), see Supplementary Material 8. How-
ever, only a very small number of patients exhibited left 
posterior fascicular block (0.9%), right bundle branch 
block (5.7%), and left bundle branch block (0.9%). This 
finding has not been previously reported.

Secondly, β2M level was identified as an important pre-
dictor of cardiac death, unexpectedly surpassing other 
renal function indicators such as creatinine and creati-
nine clearance rate.

Thirdly, BNP vs. NT-proBNP: NT-proBNP demon-
strated higher predictive value compared to BNP across 
all models, indicating its superiority in evaluating cardiac 
prognosis and the risk of cardiac death in AL amyloidosis 
patients.

Fourthly, in this study, 8 patients (3.5% of the total 
cohort, n = 230) ultimately underwent pacemaker (PM) 
or implantable cardioverter-defibrillator (ICD) implan-
tation. Among the 230 patients, 23 (10.0%) met clini-
cal indications for PM/ICD implantation, including 14 
patients with pacemaker indications (10 cases of sick 
sinus syndrome and 4 cases of high-grade or third-degree 
atrioventricular block). Of these 23 patients, 8 received 
PM/ICD implantation with a survival rate of 50% (4/8), 

while the remaining 15 patients declined or deferred 
intervention and exhibited a survival rate of 20% (3/15). 
A chi-square test comparing the two groups yielded a 
p-value of 0.135. Although the observed survival differ-
ence suggests potential clinical benefit from PM/ICD 
implantation, the limited sample size precludes definitive 
statistical significance.

These findings provide novel insights into the predic-
tion of cardiac outcomes in AL amyloidosis.

Discussion
Main findings
This study develops a novel prediction model and scoring 
system to forecast the risk of cardiac death in AL amyloi-
dosis patients, with validated performance. Additionally, 
several previously unreported clinical features associated 
with cardiac prognosis, including LAD, E/A ratio, and 
β2M level, were discovered for the first time.

Comparison of the new cardiac prognostic model and 
conventional staging systems
The prognosis for patients with systemic AL amyloidosis 
remains challenging, with cardiac death being a critical 
factor [1, 17, 18]. HF and sudden death account for 55% 
of all deaths in AL amyloidosis patients, and represent 
63.6% of all deaths in AL cardiac amyloidosis patients, 
with early cardiac deaths predominating over non-car-
diac causes such as renal failure [19, 20]. In particular, the 
risk of early sudden cardiac death is challenging to detect 
initially [3, 20].

Previous research has developed staging systems to 
evaluate outcomes [8–10]. In 2024, a simple frailty score 
using age, Eastern Cooperative Oncology Group per-
formance status, and NT-proBNP was developed [11]. 
Another study identified prognostic indicators including 
Creatine Kinase MB isoenzyme, estimated glomerular 
filtration rate (eGFR), interventricular septal thickness, 
LVEF, and alanine aminotransferase, aiming to predict 
the survival time based on multi-organ involvement 
[12]. However, these systems lack emphasis on the risk of 
cardiac death, particularly early sudden death. A recent 
study demonstrated that a combination of pericardial 
effusion, low QRS voltages, impaired global radial strain 
derived from cardiac magnetic resonance (CMR), and LV 
wall thickening can reflect the risk of death to a certain 
extent, but quantitative results of the predictive death 
risk were not provided [21].

(See figure on previous page.)
Fig. 2 Methodology and outcomes of the feature selection process for the machine learning models. (a) Five-fold cross-validation curve of LASSO Re-
gression, indicating an optimal number of features at 19, subsequently reduced to 12 to prevent overfitting. (b) Coefficient path for LASSO Regression for 
all 54 features. (c) Optimal feature selection results for the SVM model using recursive feature elimination (RFE), achieving the lowest root mean square 
error with 26 features. (d) Optimal feature selection for the RF model using RFE, achieving peak accuracy with 53 features. (e) Ranking of feature impor-
tance in the RF model. (f) Ranking of feature importance in the XGBoost model
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Fig. 3 Model performance evaluation across three datasets. a-c. ROC curves and AUCs for the five models. (a) Training set. (b) Internal validation set. (c) 
External validation set. d-f.Calibration curves and Brier scores for the five models. (d) Training set. (e) Internal validation set. (f) External validation set. g-i. 
DCA for the five models. (g) Training set. (h) Internal validation set. (i) External validation set. j-l. Radar charts for the five models. (j) Training set. k. Internal 
validation set. l. External validation set
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We acknowledge that, although several staging systems 
for AL amyloidosis in clinical practice hold significant 
importance, these systems still exhibit limitations.

Limitations of existing staging systems
The Mayo 2004 staging system, the most classical system 
for AL amyloidosis, classifies patients into three stages 
with median survival times of 26.4, 10.5, and 3.5 months, 
respectively [8]. However, a significant proportion of 
clinically diagnosed AL amyloidosis patients fall into 
Stage 2. While some Stage 2 patients experience early 
cardiac sudden death, others survive far beyond the pre-
dicted 10.5 months, highlighting the system’s limited dis-
criminative capacity in this “gray-zone” population. The 
Mayo 2012 system introduced the difference in free light 
chains (dFLC) as a prognostic factor [9]. Although we ini-
tially included dFLC and serum free light chain ratio as 
potential predictors in our machine learning model, these 
variables failed to demonstrate satisfactory predictive 
value for early cardiac death. In contrast, the variables 
ultimately selected in our model showed superior per-
formance. The European 2015 modification of the Mayo 
2004 system introduced a very-high-risk subgroup (Stage 
3b) [22]. However, the 3-year survival rates for Stage 2 
(55%) and Stage 3a (52%) patients remain clinically indis-
tinct, underscoring its limited prognostic utility.

To validate our model’s superiority, we quantitatively 
compared its predictive performance with the Mayo 
2004, Mayo 2012, and European 2015 systems, and our 

model achieved significantly higher performance than all 
existing systems in both cohorts.

Impact of modern therapies
Recent advances in treatment regimens, including cyclo-
phosphamide-bortezomib-dexamethasone (VCD) and 
particularly daratumumab-based therapies, have signifi-
cantly prolonged survival in AL amyloidosis patients [23–
28]. Consequently, the prognostic accuracy of historical 
staging systems may be compromised. Our study cohort 
(2014–2023, with validation from 2019 to 2023) incorpo-
rates patients managed under contemporary therapeutic 
paradigms, ensuring our model serves as a timely update 
and complement to classical systems.

Cardiac-Specific prognostication
Existing staging systems evaluate overall survival (all-
cause mortality) rather than cardiac-specific outcomes. 
In contrast, our model was explicitly designed and 
trained to predict cardiac death, excluding non-cardiac 
causes (e.g., renal failure). This specificity enhances its 
utility for identifying high-risk patients requiring tar-
geted cardiac monitoring and preventive interventions.

Clinical accessibility
While our model does not incorporate advanced imaging 
modalities like CMR or speckle-tracking echocardiogra-
phy, it relies on readily available clinical and laboratory 

Fig. 4 Confusion matrix of five models. a. LR model in the internal validation, b-f. LR, CART, RF, XGBoost, and SVM models in the external validation, 
respectively
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parameters. This design ensures practical applicability in 
resource-limited settings.

Underlying mechanisms linking clinical features to cardiac 
outcomes
We found that LVEF is the most powerful predictor of 
cardiac prognosis. On one hand, despite AL cardiac amy-
loidosis primarily characterized by diastolic dysfunction 
and often presenting with HF with preserved ejection 
fraction in the early stages, progressive decline in left 
ventricular systolic function occurs as the disease pro-
gresses [17]. On the other hand, with ongoing amyloid 
infiltration and its toxic effects on the myocardium, HF 
exacerbation is often accompanied by conduction system 
abnormalities and can lead to VA or conduction blocks, 
increasing the risk of mortality [29].

Similarly, the presence of wall motion abnormalities is 
a useful predictive feature. These abnormalities not only 
reflect the severity of amyloid infiltration in the LV myo-
cardium but also indicate the potential for acute myo-
cardial injury and myocardial infarction due to amyloid 

infiltration of the coronary arteries and their surrounding 
tissues, even in the absence of atherosclerotic coronary 
artery disease [30, 31]. Localized wall motion abnormali-
ties may signify the presence of amyloid-related coronary 
artery disease and suggest a risk for future myocardial 
infarction [32, 33].

The E/A ratio is a useful prognostic clinical feature, pri-
marily used to assess mitral valve hemodynamics and LV 
diastolic function. It is typically elevated in moderate to 
severe LV diastolic dysfunction and severe mitral regur-
gitation (MR). In AL amyloidosis, severe LV diastolic dys-
function indicates widespread amyloid deposition and 
advanced disease, often signaling poor prognosis. Mod-
erate to severe MR and tricuspid regurgitation have been 
previously shown to be associated with adverse outcomes 
in HF populations [34, 35]. Data on valvular disease in 
AL cardiac amyloidosis indicate that the most common 
valvular abnormalities are tricuspid regurgitation (52.8%) 
and MR (47.2%) [36]. In our study, these proportions 
appear to be higher. Recent studies demonstrate that 
patients with moderate to severe mitral and tricuspid 

Fig. 5 Nomogram of the final prediction model (LR model)
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regurgitation tend to have more severe symptoms, higher 
NT-proBNP and cardiac troponin levels, and are inde-
pendently associated with increased risk of all-cause 
mortality or worsening HF [37]. Atrial functional MR is 
considered the most common cause of MR in this pop-
ulation. However, whether treating MR in patients with 
cardiac amyloidosis improves the clinical course of the 
disease and attenuates the progression of four-chamber 
remodeling remains unexplored and warrants further 
investigation.

Notably, our findings indicate that β2M emerges as a 
robust predictor of cardiac outcomes. This may be due to 
its reflection of underlying HF and multi-organ dysfunc-
tion. On one hand, its elevation is common in renal dys-
function and hematological malignancies, such as MM, 
where it serves as an independent prognostic marker for 
survival and can predict the likelihood of renal function 
response, recovery, and dialysis dependence [38, 39]. The 
β2M decline index, based on pre- and post-treatment 
changes, predicts MM treatment efficacy and survival 
[40]. On the other hand, increasing clinical evidence 

shows that β2M levels correlate with HF severity and 
predict all-cause and cardiovascular mortality [41, 42]. 
Beyond potential cardio-renal interactions, studies pro-
pose that the mechanism by which plasma β2M affects 
the heart involves mechanical stretch and induction of 
inflammation, contributing to the progression of cardiac 
fibrosis [43, 44], although further research is needed to 
fully elucidate these pathways.

The diagnostic and prognostic roles of cardiac tropo-
nins in cardiac amyloidosis have been extensively vali-
dated and are integrated into multiparametric staging 
systems [8–10, 16, 45]. Additionally, cardiac troponins 
are helpful in monitoring chemotherapy response in AL 
amyloidosis and risk stratification of early death following 
ASCT [16, 46]. In our study, troponin was not included 
in the LR model’s best predictor cohort, but it ranked 
7th in the RF model and 5th in the XGBoost model’s fea-
ture importance rankings, indicating its significance as 
a predictive factor. In our cohort, an elevation of cTnI 
was uncommon at initial diagnosis of AL amyloidosis 
but tended to rise during follow-up and showed marked 

Fig. 6 Comparison of performance with established staging systems. (a) ROC curves for the training/internal validation set; (b) ROC curves for the exter-
nal validation set; (c) Radar chart for the training/internal validation set; (d) Radar plot for the external validation set

 



Page 15 of 17Pang et al. Cardio-Oncology           (2025) 11:45 

abnormalities in patients who ultimately died of cardiac 
causes. Furthermore, our study included cTnI rather than 
cardiac troponin T, which has been shown to be a better 
predictor than cTnI [16]. Therefore, we speculate that the 
LR model did not include cTnI due to potential lagging 
in predicting cardiac outcomes; however, there is no evi-
dence to support this hypothesis, which requires further 
investigation.

Additionally, several treatment-related factors that 
influence prognosis warrant attention. A recent study 
demonstrated that complete hematologic response 
to treatment for AL cardiac amyloidosis can lead to 
improvements in LV myocardial work indices and bet-
ter outcomes [47]. Our scoring system includes whether 
a patient has undergone ASCT, which has been shown 
to be an effective therapy, but only selected patients can 
undergo this procedure [1, 17, 18]. These findings under-
score the critical importance of early diagnosis and the 
prioritization of managing modifiable risk factors of the 
cardiac death in the treatment of AL amyloidosis.

Regarding the consideration of NT-proBNP and BNP, 
we deliberately included both biomarkers as candidate 
predictors in our modeling process to address ongoing 
debates about their prognostic utility in cardiac AL amy-
loidosis. While NT-proBNP is more commonly utilized 
in staging systems [8, 9], certain frameworks, such as the 
2019 Boston University staging system, prioritize BNP 
[10]. Notably, NT-proBNP exhibits greater susceptibility 
to confounding by comorbidities prevalent in AL amyloi-
dosis (e.g., atrial fibrillation, renal dysfunction). To objec-
tively resolve this clinical uncertainty, both biomarkers 
underwent identical variable selection procedures (step-
wise regression, LASSO). Across all models, NT-proBNP 
consistently demonstrated superior predictive perfor-
mance for cardiac outcomes and was ultimately retained 
in the final LR model and nomogram, whereas BNP was 
statistically excluded. This methodology ensured an unbi-
ased evaluation while rigorously mitigating multicol-
linearity concerns.

Limitations
Firstly, despite integrating a ten-year cohort from Bei-
jing Chaoyang Hospital and a four-year cohort from 
two additional centers, the rarity and diagnostic com-
plexity of AL amyloidosis limited our final sample size. 
Secondly, this study did not include CMR and speckle 
tracking echocardiography due to limited retrospective 
data, although these modalities have significant clini-
cal value in diagnosing AL amyloidosis. Future investi-
gations should explore their potential in assessing the 
risk of cardiac death associated with AL amyloidosis. 
Thirdly, although our expert panel of cardiologists and 
hematologists meticulously analyzed the causes of death, 
the possibility of potential misclassification cannot be 

completely eliminated. Prospective studies with larger 
sample sizes will be necessary to validate the findings 
and enhance the model, which is also one of our planned 
future undertakings.

Conclusions
The prediction model developed in this study exhibits 
considerable predictive capability and serves as a potent 
tool for the clinical assessment of the risk of cardiac 
death in AL amyloidosis, thereby facilitating the early 
identification of high-risk patients.
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